I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Find the highest power of 11 that will divide into 1000! exactly.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

Can you find what the last two digits of the number $4^{1999}$ are?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

This problem is designed to help children to learn, and to use, the two and three times tables.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A game that tests your understanding of remainders.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

56 406 is the product of two consecutive numbers. What are these two numbers?

The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Number problems at primary level that may require determination.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Given the products of adjacent cells, can you complete this Sudoku?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Are these statements always true, sometimes true or never true?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

This number has 903 digits. What is the sum of all 903 digits?