The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Find a great variety of ways of asking questions which make 8.

56 406 is the product of two consecutive numbers. What are these two numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Here is a chance to play a version of the classic Countdown Game.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

This number has 903 digits. What is the sum of all 903 digits?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you find what the last two digits of the number $4^{1999}$ are?

Resources to support understanding of multiplication and division through playing with number.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?