Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Number problems at primary level that require careful consideration.

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Use the information to work out how many gifts there are in each pile.

56 406 is the product of two consecutive numbers. What are these two numbers?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Number problems at primary level that may require determination.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This number has 903 digits. What is the sum of all 903 digits?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Are these statements always true, sometimes true or never true?

This task combines spatial awareness with addition and multiplication.

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you complete this jigsaw of the multiplication square?