Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

56 406 is the product of two consecutive numbers. What are these two numbers?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Can you complete this jigsaw of the multiplication square?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

Use the information to work out how many gifts there are in each pile.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Resources to support understanding of multiplication and division through playing with number.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

This problem is designed to help children to learn, and to use, the two and three times tables.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?