The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Can you find what the last two digits of the number $4^{1999}$ are?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the highest power of 11 that will divide into 1000! exactly.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

A game that tests your understanding of remainders.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Find a great variety of ways of asking questions which make 8.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This problem is designed to help children to learn, and to use, the two and three times tables.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

This number has 903 digits. What is the sum of all 903 digits?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?