Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you replace the letters with numbers? Is there only one solution in each case?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

This problem is designed to help children to learn, and to use, the two and three times tables.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Use the information to work out how many gifts there are in each pile.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.