All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This problem is designed to help children to learn, and to use, the two and three times tables.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Resources to support understanding of multiplication and division through playing with number.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This number has 903 digits. What is the sum of all 903 digits?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?