Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Given the products of adjacent cells, can you complete this Sudoku?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Here is a chance to play a version of the classic Countdown Game.

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

56 406 is the product of two consecutive numbers. What are these two numbers?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you complete this jigsaw of the multiplication square?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A game that tests your understanding of remainders.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Resources to support understanding of multiplication and division through playing with number.

Have a go at balancing this equation. Can you find different ways of doing it?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Can you work out some different ways to balance this equation?

Can you replace the letters with numbers? Is there only one solution in each case?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?