Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

56 406 is the product of two consecutive numbers. What are these two numbers?

The triangles in these sets are similar - can you work out the lengths of the sides which have question marks?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

This problem is designed to help children to learn, and to use, the two and three times tables.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Resources to support understanding of multiplication and division through playing with number.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How would you count the number of fingers in these pictures?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This article for teachers suggests ideas for activities built around 10 and 2010.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Use the information to work out how many gifts there are in each pile.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?