Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

56 406 is the product of two consecutive numbers. What are these two numbers?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Resources to support understanding of multiplication and division through playing with number.

This problem is designed to help children to learn, and to use, the two and three times tables.