Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

The triangles in these sets are similar - can you work out the lengths of the sides which have question marks?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

This problem is designed to help children to learn, and to use, the two and three times tables.

Resources to support understanding of multiplication and division through playing with number.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Have a go at balancing this equation. Can you find different ways of doing it?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Use the information to work out how many gifts there are in each pile.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

How would you count the number of fingers in these pictures?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?