Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

This problem is designed to help children to learn, and to use, the two and three times tables.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This number has 903 digits. What is the sum of all 903 digits?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Shut the Box game for an adult and child. Can you turn over the cards which match the numbers on the dice?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

How would you count the number of fingers in these pictures?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Have a go at balancing this equation. Can you find different ways of doing it?

Resources to support understanding of multiplication and division through playing with number.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Can you work out some different ways to balance this equation?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?