Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Number problems at primary level that may require determination.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

How would you count the number of fingers in these pictures?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Number problems at primary level that require careful consideration.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

This number has 903 digits. What is the sum of all 903 digits?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

56 406 is the product of two consecutive numbers. What are these two numbers?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.