Here is a chance to play a version of the classic Countdown Game.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you replace the letters with numbers? Is there only one solution in each case?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you complete this jigsaw of the multiplication square?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

This number has 903 digits. What is the sum of all 903 digits?

Number problems at primary level that may require determination.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Number problems at primary level that require careful consideration.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?