This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Can you complete this jigsaw of the multiplication square?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

There were 22 legs creeping across the web. How many flies? How many spiders?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Annie and Ben are playing a game with a calculator. What was Annie's secret number?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

Shut the Box game for an adult and child. Can you turn over the cards which match the numbers on the dice?

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This task combines spatial awareness with addition and multiplication.