Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There were 22 legs creeping across the web. How many flies? How many spiders?

Shut the Box game for an adult and child. Can you turn over the cards which match the numbers on the dice?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Can you complete this jigsaw of the multiplication square?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Here is a chance to play a version of the classic Countdown Game.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?