This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you replace the letters with numbers? Is there only one solution in each case?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Have a go at balancing this equation. Can you find different ways of doing it?

Here is a chance to play a version of the classic Countdown Game.

There were 22 legs creeping across the web. How many flies? How many spiders?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Can you complete this jigsaw of the multiplication square?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

This number has 903 digits. What is the sum of all 903 digits?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Use the information to work out how many gifts there are in each pile.