During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

This article for teachers suggests ideas for activities built around 10 and 2010.

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Number problems at primary level that require careful consideration.

Can you complete this jigsaw of the multiplication square?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

There were 22 legs creeping across the web. How many flies? How many spiders?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This number has 903 digits. What is the sum of all 903 digits?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Resources to support understanding of multiplication and division through playing with number.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

This problem is designed to help children to learn, and to use, the two and three times tables.