Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you complete this jigsaw of the multiplication square?

Can you replace the letters with numbers? Is there only one solution in each case?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

There were 22 legs creeping across the web. How many flies? How many spiders?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

56 406 is the product of two consecutive numbers. What are these two numbers?

Number problems at primary level that require careful consideration.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Number problems at primary level that may require determination.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Resources to support understanding of multiplication and division through playing with number.

This problem is designed to help children to learn, and to use, the two and three times tables.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Are these statements always true, sometimes true or never true?

This task combines spatial awareness with addition and multiplication.

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

Have a go at balancing this equation. Can you find different ways of doing it?