In this article for teachers, Elizabeth Carruthers and Maulfry Worthington explore the differences between 'recording mathematics' and 'representing mathematical thinking'.

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

On Friday the magic plant was only 2 centimetres tall. Every day it doubled its height. How tall was it on Monday?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Resources to support understanding of multiplication and division through playing with number.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

This problem is designed to help children to learn, and to use, the two and three times tables.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

The triangles in these sets are similar - can you work out the lengths of the sides which have question marks?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you replace the letters with numbers? Is there only one solution in each case?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Find a great variety of ways of asking questions which make 8.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Here is a chance to play a version of the classic Countdown Game.

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?