This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

How would you count the number of fingers in these pictures?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

There were 22 legs creeping across the web. How many flies? How many spiders?

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

Use the information to work out how many gifts there are in each pile.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Number problems at primary level that may require determination.

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

This number has 903 digits. What is the sum of all 903 digits?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?