In this game the winner is the first to complete a row of three. Are some squares easier to land on than others?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nasty versions of this dice game but we'll start with the nice ones...

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Here is a chance to play a version of the classic Countdown Game.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

This challenge extends the Plants investigation so now four or more children are involved.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Delight your friends with this cunning trick! Can you explain how it works?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

You have four jugs of 9, 7, 4 and 2 litres capacity. The 9 litre jug is full of wine, the others are empty. Can you divide the wine into three equal quantities?

If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

This article suggests some ways of making sense of calculations involving positive and negative numbers.

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

This article for teachers suggests ideas for activities built around 10 and 2010.

Find a great variety of ways of asking questions which make 8.

Here is a chance to play a fractions version of the classic Countdown Game.

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

How can we help students make sense of addition and subtraction of negative numbers?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?