This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Ann thought of 5 numbers and told Bob all the sums that could be made by adding the numbers in pairs. The list of sums is 6, 7, 8, 8, 9, 9, 10,10, 11, 12. Help Bob to find out which numbers Ann was. . . .

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Delight your friends with this cunning trick! Can you explain how it works?

Use these four dominoes to make a square that has the same number of dots on each side.

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

Find a great variety of ways of asking questions which make 8.

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

You have four jugs of 9, 7, 4 and 2 litres capacity. The 9 litre jug is full of wine, the others are empty. Can you divide the wine into three equal quantities?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Find out about Magic Squares in this article written for students. Why are they magic?!

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

An account of some magic squares and their properties and and how to construct them for yourself.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This article suggests some ways of making sense of calculations involving positive and negative numbers.

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

What is the sum of all the digits in all the integers from one to one million?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

This challenge extends the Plants investigation so now four or more children are involved.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

How can we help students make sense of addition and subtraction of negative numbers?

This article for teachers suggests ideas for activities built around 10 and 2010.

Here is a chance to play a version of the classic Countdown Game.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?