How many solutions can you find to this sum? Each of the different letters stands for a different number.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This challenge extends the Plants investigation so now four or more children are involved.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

This article suggests some ways of making sense of calculations involving positive and negative numbers.

Got It game for an adult and child. How can you play so that you know you will always win?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Delight your friends with this cunning trick! Can you explain how it works?

Here is a chance to play a version of the classic Countdown Game.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

This Sudoku, based on differences. Using the one clue number can you find the solution?

There are nasty versions of this dice game but we'll start with the nice ones...

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Find out about Magic Squares in this article written for students. Why are they magic?!

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

Here is a chance to play a fractions version of the classic Countdown Game.

This article for teachers suggests ideas for activities built around 10 and 2010.

Find a great variety of ways of asking questions which make 8.

What is the sum of all the digits in all the integers from one to one million?

How can we help students make sense of addition and subtraction of negative numbers?

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

Using the 8 dominoes make a square where each of the columns and rows adds up to 8

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.