This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

This article for teachers suggests ideas for activities built around 10 and 2010.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This Sudoku, based on differences. Using the one clue number can you find the solution?

If you have only four weights, where could you place them in order to balance this equaliser?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Here is a chance to play a version of the classic Countdown Game.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

A game for 2 players. Practises subtraction or other maths operations knowledge.

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?