Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Delight your friends with this cunning trick! Can you explain how it works?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

This challenge extends the Plants investigation so now four or more children are involved.

This Sudoku, based on differences. Using the one clue number can you find the solution?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Here is a chance to play a version of the classic Countdown Game.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

If you have only four weights, where could you place them in order to balance this equaliser?

There are nasty versions of this dice game but we'll start with the nice ones...

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to. . . .

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you use the information to find out which cards I have used?

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?