This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

Use these four dominoes to make a square that has the same number of dots on each side.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

Investigate the different distances of these car journeys and find out how long they take.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?