In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

Delight your friends with this cunning trick! Can you explain how it works?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Find out about Magic Squares in this article written for students. Why are they magic?!

How can we help students make sense of addition and subtraction of negative numbers?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

Ann thought of 5 numbers and told Bob all the sums that could be made by adding the numbers in pairs. The list of sums is 6, 7, 8, 8, 9, 9, 10,10, 11, 12. Help Bob to find out which numbers Ann was. . . .

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find a great variety of ways of asking questions which make 8.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Here is a chance to play a version of the classic Countdown Game.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

What is the sum of all the digits in all the integers from one to one million?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?