Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

This article for teachers suggests ideas for activities built around 10 and 2010.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

This article suggests some ways of making sense of calculations involving positive and negative numbers.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Investigate what happens when you add house numbers along a street in different ways.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

You have four jugs of 9, 7, 4 and 2 litres capacity. The 9 litre jug is full of wine, the others are empty. Can you divide the wine into three equal quantities?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!