This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If you have only four weights, where could you place them in order to balance this equaliser?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

You have 5 darts and your target score is 44. How many different ways could you score 44?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

A game for 2 players. Practises subtraction or other maths operations knowledge.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.