Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nasty versions of this dice game but we'll start with the nice ones...

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Here is a chance to play a version of the classic Countdown Game.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

If you have only four weights, where could you place them in order to balance this equaliser?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This task follows on from Build it Up and takes the ideas into three dimensions!

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?