Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate what happens when you add house numbers along a street in different ways.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Delight your friends with this cunning trick! Can you explain how it works?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

This article for teachers suggests ideas for activities built around 10 and 2010.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Can you each work out the number on your card? What do you notice? How could you sort the cards?