If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Can you use the information to find out which cards I have used?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

Using the 8 dominoes make a square where each of the columns and rows adds up to 8

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Ann thought of 5 numbers and told Bob all the sums that could be made by adding the numbers in pairs. The list of sums is 6, 7, 8, 8, 9, 9, 10,10, 11, 12. Help Bob to find out which numbers Ann was. . . .

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

This challenge extends the Plants investigation so now four or more children are involved.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Investigate what happens when you add house numbers along a street in different ways.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

These two group activities use mathematical reasoning - one is numerical, one geometric.

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Are these statements always true, sometimes true or never true?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?