Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Use the information to work out how many gifts there are in each pile.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

You have 5 darts and your target score is 44. How many different ways could you score 44?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Number problems at primary level to work on with others.

Number problems at primary level that may require determination.

Number problems at primary level that require careful consideration.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task combines spatial awareness with addition and multiplication.

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.