Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Delight your friends with this cunning trick! Can you explain how it works?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Find out about Magic Squares in this article written for students. Why are they magic?!

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Using the statements, can you work out how many of each type of rabbit there are in these pens?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.