Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

Use these four dominoes to make a square that has the same number of dots on each side.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

This Sudoku, based on differences. Using the one clue number can you find the solution?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?