A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Got It game for an adult and child. How can you play so that you know you will always win?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Here is a chance to play a version of the classic Countdown Game.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Delight your friends with this cunning trick! Can you explain how it works?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

If you have only four weights, where could you place them in order to balance this equaliser?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?