Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Investigate the different distances of these car journeys and find out how long they take.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Use the information to work out how many gifts there are in each pile.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This number has 903 digits. What is the sum of all 903 digits?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?