A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Investigate the different distances of these car journeys and find out how long they take.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Number problems at primary level to work on with others.

Number problems at primary level that require careful consideration.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

This number has 903 digits. What is the sum of all 903 digits?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Use the information to work out how many gifts there are in each pile.

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Number problems at primary level that may require determination.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

This task combines spatial awareness with addition and multiplication.

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Can you make square numbers by adding two prime numbers together?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!