Can you each work out the number on your card? What do you notice? How could you sort the cards?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This project challenges you to work out the number of cubes hidden under a cloth. What questions would you like to ask?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Can you hang weights in the right place to make the equaliser balance?

Can you use the information to find out which cards I have used?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Investigate what happens when you add house numbers along a street in different ways.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

You have 5 darts and your target score is 44. How many different ways could you score 44?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!