Can you use the information to find out which cards I have used?

Investigate what happens when you add house numbers along a street in different ways.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Jack's mum bought some candles to use on his birthday cakes and when his sister was born, she used them on her cakes too. Can you use the information to find out when Kate was born?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

This project challenges you to work out the number of cubes hidden under a cloth. What questions would you like to ask?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have 5 darts and your target score is 44. How many different ways could you score 44?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?