In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Investigate what happens when you add house numbers along a street in different ways.

This activity is best done with a whole class or in a large group. Can you match the cards? What happens when you add pairs of the numbers together?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Susie took cherries out of a bowl by following a certain pattern. How many cherries had there been in the bowl to start with if she was left with 14 single ones?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

There were 22 legs creeping across the web. How many flies? How many spiders?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

Investigate the different distances of these car journeys and find out how long they take.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?