Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you hang weights in the right place to make the equaliser balance?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Use the number weights to find different ways of balancing the equaliser.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

If you have only four weights, where could you place them in order to balance this equaliser?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Fill in the numbers to make the sum of each row, column and diagonal equal to 15.

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This challenge extends the Plants investigation so now four or more children are involved.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Sam got into an elevator. He went down five floors, up six floors, down seven floors, then got out on the second floor. On what floor did he get on?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

There are nasty versions of this dice game but we'll start with the nice ones...

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Here is a chance to play a version of the classic Countdown Game.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?