Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have 5 darts and your target score is 44. How many different ways could you score 44?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you hang weights in the right place to make the equaliser balance?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

If you have only four weights, where could you place them in order to balance this equaliser?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

A game for 2 players. Practises subtraction or other maths operations knowledge.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

In this game for two players, the aim is to make a row of four coins which total one dollar.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Find all the numbers that can be made by adding the dots on two dice.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?