First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This challenge extends the Plants investigation so now four or more children are involved.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

There are nasty versions of this dice game but we'll start with the nice ones...

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

If you have only four weights, where could you place them in order to balance this equaliser?

Here is a chance to play a version of the classic Countdown Game.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you hang weights in the right place to make the equaliser balance?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Use the number weights to find different ways of balancing the equaliser.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

The picture shows a lighthouse and many underwater creatures. If you know the markings on the lighthouse are 1m apart, can you work out the distances between some of the different creatures?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.