If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Use the number weights to find different ways of balancing the equaliser.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Leah and Tom each have a number line. Can you work out where their counters will land? What are the secret jumps they make with their counters?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Can you hang weights in the right place to make the equaliser balance?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Find all the numbers that can be made by adding the dots on two dice.