Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This challenge extends the Plants investigation so now four or more children are involved.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you hang weights in the right place to make the equaliser balance?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

If you have only four weights, where could you place them in order to balance this equaliser?

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

These two group activities use mathematical reasoning - one is numerical, one geometric.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

Find all the numbers that can be made by adding the dots on two dice.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?