Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you hang weights in the right place to make the equaliser balance?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

An environment which simulates working with Cuisenaire rods.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Use the number weights to find different ways of balancing the equaliser.

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These two group activities use mathematical reasoning - one is numerical, one geometric.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.