A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Number problems at primary level that may require determination.

Number problems at primary level to work on with others.

Number problems at primary level that require careful consideration.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Got It game for an adult and child. How can you play so that you know you will always win?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

You have 5 darts and your target score is 44. How many different ways could you score 44?

This dice train has been made using specific rules. How many different trains can you make?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Can you make square numbers by adding two prime numbers together?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Are these statements always true, sometimes true or never true?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This task follows on from Build it Up and takes the ideas into three dimensions!

This task combines spatial awareness with addition and multiplication.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

An environment which simulates working with Cuisenaire rods.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?