For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

If you have only four weights, where could you place them in order to balance this equaliser?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

An environment which simulates working with Cuisenaire rods.

Here is a chance to play a version of the classic Countdown Game.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make square numbers by adding two prime numbers together?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How would you count the number of fingers in these pictures?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?