Find your way through the grid starting at 2 and following these operations. What number do you end on?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

This challenge is about finding the difference between numbers which have the same tens digit.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you hang weights in the right place to make the equaliser balance?

If you have only four weights, where could you place them in order to balance this equaliser?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Find all the numbers that can be made by adding the dots on two dice.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?