Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you hang weights in the right place to make the equaliser balance?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you find all the ways to get 15 at the top of this triangle of numbers?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

A game for 2 players. Practises subtraction or other maths operations knowledge.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These two group activities use mathematical reasoning - one is numerical, one geometric.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Use the number weights to find different ways of balancing the equaliser.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?